CORBA and CORBA Services for DSA

Laurent PAUTET, Thomas QUINOT, Samuel TARDIEU and the AdaBroker team

{pautet,quinot,sam}@inf.enst.fr
adabroker-devel@adabroker.eu.org

Ecole nationale supérieure des télécommunications
46, rue Barrault
F-75634 Paris CEDEX 13, France

Abstract

Comparing CORBA and the Ada 95 Distributed Systems
Annez shows that an advantage of CORBA is its Common
Object Services, providing standard, frequently-used compo-
nents for distributed application development. This paper
presents our implementation of similar services for the DSA.
We also introduce new developments of our team that aim at
providing close interaction between CORBA and Ada appli-
cations. Part of the work presented here was accomplished
by the AdaBroker team: Fabien Azavant, Emmanuel Cha-
vane, Jean-Marie Cottin, Tristan Gingold, Laurent Kiibler,
Vincent Niebel, and Sébastien Ponce.

1 Introduction

A software developer who wants to create a distributed het-
erogeneous, possibly multi-language application faces a dif-
ficult choice. Several object models and protocol suites are
available for this purpose, each with its own advantages and
particular features; they are not currently interoperable. In
this paper, we focus more specifically on two particular ar-
chitectures: OMG CORBA and the Ada 95 Distributed Sys-
tems Annex (DSA).

CORBA [9] is sponsored by the Open Management
Group, a consortium of software vendors that seek to pro-
mote industrial standards for the development of distributed
heterogeneous applications. It is based on OMG IDL, an in-
terface description language whose syntax is close to C++.
The object model is close to Java, only allowing the defi-
nition of distributed objects. The CORBA standards also
define mappings of IDL into host languages such as C++,
Java, and Ada 95. Client stubs and server skeletons in host
language are automatically generated by an IDL compiler;
they interface with a communication subsystem, the Object
Request Broker (ORB), through a vendor-specific API. An
ORB uses a set of standard protocols to communicate with
its peers. CORBA thus permits interoperation of clients and
servers that are independently coded in different languages,
and using products from different vendors.

The Ada 95 Distributed Systems Annex is part of the
Ada 95 ISO standard [5]. It aims at providing a frame-

work for programming distributed systems within the Ada
language, while preserving strong typing properties. Its dis-
tributed application model is more general, as it can not
only include distributed objects, but also remote subpro-
grams (providing a classical remote procedure call facility)
and references to remote subprograms. It also allows the
definition of a shared data space, through the abstraction
of Shared Passive packages. In the case of DSA, the IDL
is not a separate language (as in CORBA), but the host
language itself. This affords developers an integrated ap-
proach for application development and test: going from a
non-distributed application, which is easy to test and debug,
to a full distributed system only requires the addition of one
categorization pragma to each package that defines remote
objects or subprograms. The Remote Call Interface (RCI)
categorization pragma makes the subprograms of a package
available for remote procedure calls, while the Remote Types
(RT) pragma allows access-to-class-wide types declared in
the package to designate remote objects. Such access types
are then called RACWs (Remote Access to Class-Wide).

We have developed an implementation of the Distributed
Systems Annex for the GNAT compiler [7]; the details of our
comparison of DSA and CORBA features can be found in
[10]. In this paper we first discuss the implementation of
common services for the DSA. Theses services provide func-
tionalities that are frequently required in distributed appli-
cations, and are potentially useful to all DSA developers. We
then describe our implementation of an Ada IDL precom-
piler and ORB binding. These are the necessary tools for
creating Ada software that will interoperate with CORBA
clients and servers. We finally present a new project of our
team: an automated tool to make the functionality of a DSA
server available to CORBA clients. This allows a server
implementor to only code a DSA server, while being able
to provide the same service to clients from the DSA and
CORBA worlds.

2 CORBA common services for DSA

The CORBA ORB provides a core set of basic communica-
tion services. All other distributed services that an appli-
cation may use are provided by objects described by IDL
contracts. The OMG has standardized a set of useful ser-
vices like Naming, Concurrency, Events, Trading, Licensing,
Object Life Cycle, etc. A CORBA vendor is free to provide
an implementation of these services. It is unfortunate that
the DSA currently does not provide such a set of commonly-
used services. We have consequently started to design and
implement a set of DSA services that provide similar func-

tionalities for DSA application developers. In this section,
we also describe our current development of a dynamic invo-
cation facility for DSA, which is quite similar to CORBA’s
Dynamic Invocation Interface (DII).

2.1 The Naming service

It is impractical for users of distributed applications to deal
directly with machine representations of object references,
because these are machine-oriented identifiers that designate
a particular object instance at a particular physical loca-
tion, without any consideration for the user-defined seman-
tics of the object. The Naming service allows the association
(binding) of an object reference with user-friendly names. A
name binding is always defined relative to a naming context
wherein it is unique.

A naming context is an object itself, and so can be bound
to a name in another naming context. One thus creates a
naming graph, a directed graph with naming contexts as
vertices and names as edge labels. Given a context in a
naming graph, a sequence of names can thus reference an
object. This is very similar to the naming hierarchies that
exist in the Domain Name System and the UNIX file system.

A typical usage scenario consists in obtaining a well-
known remote reference that designates the naming con-
text corresponding to the “root” of a naming hierarchy, and
then executing recursive naming operations on this hierar-
chy. The Trading Service provides a higher level of abstrac-
tion than the Naming Service: if the Naming Service can
be compared to the White Pages, the Trading Service can
be compared to the Yellow Pages, allowing a user to query
objects by their properties rather than by their name.

The CORBA naming service is defined as IDL module
CosNaming (see code sample 1). This module defines two
data types: name component, and name, which is a sequence
of name components. This module also supplies two inter-
faces: naming contert and binding iterator. The Naming
Context interface provides the necessary operations to bind
a name to an object, and to resolve (look up) a name in
order to obtain the associated object reference. The Bind-
ing Iterator interface is used to walk through a collection of
names within a context; such a collection is returned by the
list operation of the Naming Context interface.

Translating the CosNaming service definition to Ada us-
ing the standard mapping is not trivial; CosNaming makes
use of three OMG IDL features that are not easily repre-
sented in Ada: sequences, exceptions with members, and
forward interface declarations. Excerpts of the generated
code are given in samples 2 and 3.

We have implemented a similar service with native
Ada 95 distributed objects. We were thus able to take ad-
vantage of standard language features; this yields a simple
specification, which is far easier to understand and use than
the CORBA one (see samples 4 and 5).

2.2 The Events service

The Events service provides a way for servers and clients to
interact through asynchronous events between anonymous
objects. A supplier produces events, while a consumer re-
ceives event notifications and data. An event channel is the
mediator between consumers and suppliers. Consumer ad-
mins and supplier admins are in charge of providing prozies
to allow consumers and suppliers to get access to the event
channel (dashed arrows in figure 1). For instance, a pull
supplier will query his supplier admin in order to obtain a

nmodul e CosNani ng {
typedef string Istring;
struct NanmeConponent {
Istring id;
Istring kind;

b
typedef sequence <NanmeConponent> Nane;
enum Bi ndi ngType {nobject, ncontext};
struct Binding {

Name bi ndi ng_nane;

Bi ndi ngType bi ndi ng_t ype;

tglpedef sequence <Bi ndi ng> Bi ndi ngLi st ;
interface Bindinglterator;

i nterface Nam ngCont ext
exception Cannot Proceed {
Nami ngCont ext cxt;
Name rest_of _nane;

b
void bind (in Nane n, in Object obj)
rai ses (Cannot Proceed);
void |ist
(in unsigned | ong how_many,
out BindingList bl,
out Bindinglterator bi);
/1 O her declarations not shown

b

interface Bindinglterator {
bool ean next _n
(in unsigned | ong how _nany,
out BindingList bl);
/1 Qther declarations not shown
b
I

Sample 1: CosNaming IDL

proxy pull consumer. Suppliers and consumers produce and
receive events through their associated proxies (see plain ar-
rows in figure 1). From the event channel point of view, a
prozy supplier (or proxy consumer) is seen as a consumer
(or a supplier). Therefore, a proxy supplier (or proxy con-
sumer) is an extended interface of consumer (or supplier).
The Events service defines push and pull methods to ex-
change events. Four models of events and data exchange
can thus be defined.

We have developed an Events service for the DSA. Dur-
ing the implementation of the service, we realized that al-
though the service is nicely specified by an IDL file, most of
its semantics are quite vague; the behaviour of some meth-
ods is left up to the vendor in such a way portability is
seriously compromised. Other CORBA services also suffer
similar vagueness in definition. For this reason, we decided
to implement only the Naming and Events services as de-
fined by OMG, and to implement other services directly as
Ada units with well-specified semantics (see 2.3).

Note that Proxy_Push_Consumer defined in
Event_Channel_Admin inherits from Push_Consumer
defined in Event_Communication (sample 6). The OMG
has extended this service to provide typed data opera-
tions. An Ada 95 programmer would easily adapt our
implementation by using stream operations to get this new
service.

2.3 The Mutex service

CORBA defines a Concurrency service that basically offers
a complete locking system to serialize concurrent access to
a resource. Extended features such as “intent to lock” are

wi th Corba. Qbj ect, Corba. Sequences,
Cor ba. For war d;
package CosNaming is

type Istring is new Corba. String;
type NaneConponent is
record
id: Istring;
kind : Istring;
end record;

—— Example of a sequences mapping
package NameComponent_Unbounded is
new Cor ba. Sequences. Unbounded
(NanmeConponent) ;
type Nanme is
new NarmeConponent _Unbounded. Sequence;

package Bindinglterator_Forward is
new Cor ba. For war d;
end CosNami ng;

Sample 2: CosNaming

Event Admininistration
Supplier Event Consumer
Admin Channel Admin
v \\ /I N
V4 \ /2 N\
Proxy Pull Proxy Push Proxy Push Proxy Pull
Consumer Consumer Supplier Supplier
Pull Push Push Pull
Supplier Supplier Consumer Consumer
Event Communication

Figure 1: Structure of the Events service IDLs

also defined by this service.

‘We have chosen to implement basic locking services using
a more decentralized approach. Our service is based on a
distributed mutual exclusion algorithm described by Li and
Hudak in [8], which avoids using a central lock manager.
It has been described in [11]|, while a previous prototype
implementation done by ENST students can be found in [2].

2.4 Dynamic invocation in DSA
2.4.1 Introducing the Dynamic Invocation service

In CORBA, the Interface Repository (IR) and Dynamic In-
vocation Interface (DII) mechanisms allow clients to dynam-
ically discover and invoke services.

The Interface Repository is a database maintained by
server ORBs that stores information describing the services
that are available in the system (e. g. the list of opera-
tions for a given distributed object type, with their names
and parameter profiles). It is accessible for all nodes that
exist in the distributed application. Clients can query the
IR to retrieve the methods associated with an object ref-
erence, and the signature of one such method at run time,
and then invoke that method, even though its specification
was unknown to the client at compile time. The Dynamic
Invocation Interface is the API that allows the construction

wi th Corba. Obj ect, Ada. Exceptions;
use CosNam ng, Ada. Excepti ons;
package CosNaming.NamingContext is

type Ref is new Corba. Cbject.Ref with
null record;

function To_NamingContext (
Sel f: in Corba. Ooject.Ref’class)
return Ref’cl ass;

—— An IDL exception is mapped to an
—— Ada exception plus a tagged record.

Cannot Proceed : exception;
type Cannot Proceed_Menbers is
new Corba. | dl _Exception_Menbers with
record
ctx : Nam ngCont ext;
rest _of _name : Nane;
end record,

function Get_Members (
X: in Exception_Cccurrence)
return Cannot Proceed_Menbers ;

procedure bind (Self: in Ref;
N in Nang;
Qoj: in Corba. Oject. Ref);

—- Forward reference to Bindinglterator.
procedure list
(Self : in Ref;
how_many: in Corba. Unsi gned_Long;
bl : out Bi ndi ngLi st;
bi: out Bindinglterator_Forward. Ref);

—— [some declarations are missing]
end CosNami ng. Nani ngCont ext ;

Sample 3: CosNaming.NamingContext

of a method call from the description returned by the IR
and client-provided actual parameters.

The DSA does not define a similar facility. However, such
a service can easily be provided, and we seek to implement it.
In the following two sections, we describe the specification
of this future facility.

2.4.2 Implementation of the Interface Repository

In our DSA Dynamic Invocation facility, an RCI package
will act as a DSA interface repository; ASIS tools will be
used to obtain the necessary interface information from an
Ada compilation environment and make it available to the
interface repository, and utility packages will be created that
provide a dynamic request construction facility.

ASIS [6] is an open, published, vendor-independent API
for interaction between CASE tools and an Ada compilation
environment. It defines the operations needed by such tools
to extract information about compiled Ada code from the
compilation environment. The ASIS interface allows the tool
developer to take advantage of the parsing facility built in
the compiler; it provides an easy access to the syntax tree
and associated semantic information built by the compiler
from a compilation unit.

ASIS standardizes a set of queries that allow an Ada pro-
gram to manipulate the syntactic information corresponding
to another Ada program: for a given Ada element, it gives
access to its children element; a systematic recursive traver-
sal iterator is provided, as well as queries that allow the user
to explicitly obtain specific children elements of an element.
These are the ASIS syntactic queries. A set of semantic

package GLADE.Naming is
pragma Renot e_Types;

type Istring is private;
function Get_lstring

(I : inlIstring) return String;
procedure Set_lstring
(I : inout Istring; S: in String);

type Name_Conponent is record
Id, Kind : Istring;
end record;
type Name_Conponent _Sequence is
array (Natural range <>)
of Nane_Conponent ;
type Name is private;
—— [some declarations are missing]
private
—— [some declarations are missing]
end GLADE. Nani ng;

Sample 4: GLADE.Naming

wi th GLADE. Obj ects; use GLADE. Obj ect s;

wi th GLADE. Nani ng; use GLADE. Nam ng;

package GLADE.Naming.Interface is
pragma Renot e_Types;

type Binding_lterator is
tagged limted private;
type Binding_Iterator_Ref is
access all Binding_lterator’ d ass;

type Nami ng_Context is
new bj ects. Object with private;
type Nam ng_Context _Ref is
access all Nami ng_Context’ d ass;

procedure Bind
(Ctx : access Nam ng_Context;

N : in Nang;

Cbj : in GLADE. Obj ects. Obj ect _Ref);
procedur e List

(Ctx : access Nam ng_Cont ext ;

How Many : in Natural;

BL : out Binding_List;

Bl : out Binding_lterator_Ref);
—— [some declarations are missing]

private

—— [some declarations are missing]
end GLADE. Nani ng. I nterface;

Sample 5: GLADE.Naming.NamingContexts

queries is also defined. These functions provide information
about the semantic relathionships between elements. For
example, from an element that is a usage name for an en-
tity, they can provide the definition of that entity. We thus
can view ASIS as a reflezivity interface for Ada.

The interface repository can be implemented as a
straightforward DSA server that offers two sets of opera-
tions. For DSA service providers (other RCI or Remote
Types packages), it shall provide a means to register an in-
terface, comprising a set of primitive operation names and
their signatures. This can be achieved by submitting ASIS
tree data for the package declaration to the Interface repos-
itory. For clients, it shall offer a means of retrieving the
description of the operations of a distributed object, given
a reference to this object. In other words, it shall provide a
means to perform queries on the ASIS data.

The ASIS standard specifies a set of services that may be
provided in a client-server implementation. These services
closely reflect the low-level queries provided by the stan-

with Ada. Streams; use Ada. Streans;
package GLADE.Event_Communication.Interface i s
pragma Renot e_Types;

type Push_Consuner is
abstract tagged limted private;
type Any_Push_Consuner is
access all Push_Consuner’ d ass;

procedur e Disconnect

(Consuner access Push_Consuner)
is abstract;
procedure Push
(Consuner access Push_Consunmer;
Event :in Stream El enent _Array)
is abstract;
—— [some declarations are missing]
private

—- [some declarations are missing]
end GLADE. Event _Comruni cation. | nterface;
wi th GLADE. Event _Conmuni cation. I nterface;
use GLADE. Event _Communi cati on. I nterface;
package GLADE.Event_Channel_Admin.Interface is
pragma Renote_Types;

type Proxy_Push_Consuner is
abstract new Push_Consuner
with private;
type Any_Proxy_Push_Consuner is
access all Proxy_Push_Consuner’ d ass;

procedur e Connect
(Consuner: access Proxy_Push_Consuner;
Supplier: in Any_Push_Supplier)
is abstract;
—— [some declarations are missing]
private
—— [some declarations are missing]
end GLADE. Event _Channel _Admi n. I nterface;

Sample 6: GLADE Event Interfaces

dard. We consider that a DSA Interface repository should
provide queries that fit smoothly in the model of existing
queries, while providing higher-level semantic information,
as required by clients’ needs. For example, a query that
lists all visible primitive operations of a distributed object
type would be very useful to DII clients. Consequently, we
see the DSA IR essentially as an ASIS server with extended
functionalities, as required for the purposes of dynamic in-
vocation.

As soon as it is registered, a service is known to the repos-
itory and visible by clients. In the case of the registration
of a distributed object type, for example, any client that
obtains an access value designating an object of this type
can retrieve the description of its operations, even though
it knew nothing of them at compile time, and does not se-
mantically depend on the server specification.

2.4.3 Implementation of the request construction library

The DII client will then use a utility function that constructs
a request message from an interface description retrieved
from the repository, and actual parameters provided by the
client. This message will be sent to the server through the
Partition Communication Subsystem (PCS), just like a nor-
mal remote call generated by the compiler in a “static” ser-
vice invocation: the client will call a wrapper routine that
will build a proper request description and ultimately call
one of the standard invocation subprograms of the PCS,
Do_RPC and Do_APC.

Apart from calls to the service registration functions,

Traditional DSA client

Traditional invocation

4
DSA server
RT or RCI package)

" 1. Server submits
service description

/4
Interface Repository
(DSA server)

4. Dynamic
Invocation

:_ 2. Client discoversinterface

DSA/DII client

3. Request construction

DSA request
construction library

Figure 2: Dynamic Invocation for DSA

no Interface Repository or DII-specific code is required on
the server side; it should be noted in particular that, from
the server point of view, a dynamically constructed request
is treated exactly in the same way as a traditional, static
request. The dynamic interface discovery and invocation
mechanisms are confined in the DSA interface repository
and the client request construction library.

The system outlined above is going to be implemented
by our team in the next few months; all DSA users will
thus gain the same flexibility with dynamic invocation that
is currently offered to CORBA programmers by the most
advanced ORBs, which implement the CORBA Interface
Repository.

3 Free CORBA ORBs for Ada

3.1 An omniORB-based Ada ORB

The CORBA standard specifies a mapping of IDL to Ada.
Using an IDL to Ada precompiler and the corresponding
ORB, it should be possible to implement CORBA clients
and servers in Ada. Unfortunately, we do not know of
any existing free, open-source implementation of such tools.
We feel that this situation makes it impractical to evaluate
CORBA with Ada during a project’s prototyping phase, to
integrate them in a critical application where source code
availability is required, or to use them in an educational
context.

However, free C and C++ ORBs with C and C++ IDL pre-
compilers are readily available. We have therefore decided to
develop an Ada binding for a free ORB’s internal API, and
to implement our own IDL precompiler targeted at Ada 95
using this APIL. This constitutes the AdaBroker project [1].
We selected the C++ ORB omniORB' for this project. This

1For detailed

information about omniORB, see

ORB, available from AT&T Laboratories Cambridge (for-
merly ORL) under the GNU General Public License, pro-
vides a fairly complete implementation of the CORBA stan-
dards and of the C++ language mapping, and has proven ex-
tremely performant, particularly under Linux. omniORB’s
IDL to C++ precompiler is based on the free Sun IDL front-
end. We have developed a new back-end targeted at Ada 95,
and integrated it in omniORB’s precompiler. Our tool com-
plies with the OMG standard Ada language mapping, and
generates client stubs and implementation skeletons in Ada.

We also have implemented Ada packages that provide
a complete binding to the transport facilities of omniORB.
The C++ omniORB library provides two classes that cor-
respond to different views of CORBA objects: Object,
which is the ancestor class for all server implementations,
and omniObject, which embodies the network resources as-
sociated with an object. Our Ada binding encapsulates
omniObject, and reimplements a native Object class entirely
in Ada, thus allowing us to have a clean, well-defined inter-
face between the generated code and the underlying ORB
functionality, and to limit the scope of our dependance on a
specific ORB implementation.

Starting from this binding, we also developed a com-
plete DII (Dynamic Invocation Interface) implementation,
compliant with the CORBA 2.0 specification [3]. It should
be noted that the DII implementation does not need to bind
directly to any C++ code; it only uses the services provided
by the Ada wrappers for oniObject.

We have thus effectively provided a free, open-source im-
plementation of an IDL to Ada precompiler, and of matching
ORB libraries. Our work is based on omniORB, and will be
freely available and redistributable.

3.2 A novel Ada ORB

AdaBroker still lacks some functionalities. Most notably,
as omniORB provides no Interface Repository, nor does
AdaBroker. It also lacks a POA (Portable Object Adapter).
The Object Adapter is the part of the ORB responsible for
the creation, activation and destruction of object implemen-
tations. The original Object Adapter is the BOA (Basic Ob-
ject Adapter); the POA provides a more flexible interface to
implementation management. For example, it allows server
implementors to only register one implementation (a ser-
vant) for a whole set of objects sharing the same interface.
Unfortunately, omniORB currently only provides BOA.

For these reasons, we have decided to implement our
own, full Ada ORB, Abroc [4]. Abroc already has an IIOP
stack, a POA, and an IDL translator. All the system has
been successfully tested on simple client and server exam-
ples. We plan to continue this project and to extend it into
a full-featured CORBA library and toolkit for Ada 95.

4 A CORBA interface for DSA services

4.1 Objective

Services implemented as RT or RCI packages can currently
be invoked only from other Ada 95 code using the DSA
mechanisms: remote procedure calls and distributed ob-
jects. This may be considered a drawback by software com-
ponent developers when they consider using the DSA to im-
plement distributed services, because this limits the scope
of their products to Ada 95 application developers. In order
to promote the use of Ada 95 as a competitive platform for

http://wuw.uk.research.att.com/omni0ORB/omniORB.html

