Building Modern Distributed Systems

Laurent Pautet, Thomas Quinot, and Samuel Tardieu

Ecole Nationale Supérieure des Télécommunications
Networks and Computer Science Department
46, rue Barrault
F-75634 Paris Cedex 13, France
{paut et , qui not , tardi eu}@nst . fr
http://ww.infres.enst.fr/

Abstract. Ada 95 has been the first standardized language to include distribu-
tion in the core language itself. However, the set of features required by the Dis-
tributed Systems Annex of the Reference Manual is very limited and does not take
in account advanced needs such as fault tolerance, code migration or persistent
distributed storage.

This article describes how we have extended the basic model without abandon-
ning the compatibility in GLADE, our implementation of the Distributed Systems
Annex. Extensions include restart on failure, easy code migration, hot code up-
grade, restricted run time for use on embedded systems with limited processing
as well as distributed storage capabilities and persistent storage handling.

1 Introduction

It is generally admitted that Ada 83 had a strong focus on real-time, mission-critical
systems. But Ada 83 has been criticized from a number of standpoints, one of them
being its lack of cooperation with foreign programming languages and with the out-
side world in general. To fix those defects, new features were added in the latest major
revision of Ada, called Ada 95 [1]. Moreover, Ada 95 was the first internationally stan-
dardized OO language (ANSI/ISO/IEC-8652:1995). It is also the first internationally
standardized language including distribution features.

A great effort was led by Ada Core Technologies (ACT) to provide the Ada com-
munity with a free high-quality Ada 95 compiler called GNAT. This compiler, which
implements the core Ada 95 language as well as all its optional annexes, belongs to the
Gcec family and shares its back-end with the C and C++ compilers. As with the other
compilers from the Gcc suite, GNAT supports many native and cross configurations.

In collaboration with ACT, we have been developing GLADE [2], an implementation
of the Distributed Systems Annex of the language, as found in the Ada 95 reference
manual. GLADE, which is available under the same free license as GNAT, has been
designed for this particular compiler, but should be portable to any Ada 95 compilation
environment with minimal efforts. We also worked on proposing new extensions to the
original Ada 95 model for distributing Ada programs, which is described in section 2.

Those extensions, whose goal is to allow the use of modern distribution paradigms
while maintaining total compatibility with the basis model describe in the Distributed



Systems Annex, have been inspired by other middlewares such as CORBA [3] or by
user needs and remarks. The first extension, presented in section 3, removes the single
point of failure often found in distributed systems. Section 4 focuses on restarting parts
of a distributed systems after a failure, which may have been scheduled (in case of
code migration or upgrade) or not. Section 5 concentrates on shared and persistent data
storage.

In section 6, we present other useful features such as encryption or data compres-
sion. We then conclude and present our current and future research work in the last
section.

2 Distribution in Ada

In this section we present the distribution model of Ada 95, then analyze its intrinsic
limitations as well as the ones present in older GLADE releases.

2.1 Distribution Model

Ada 83 lacked distribution facilities. Every compiler vendor had to provide its own
proprietary solution for letting users build distributed applications. This led to situations
where a program could not easily be ported to another compiler!, which went against
Ada’s implicit rule of “as soon as it is written in Ada, it will work the same way with
every conforming Ada compiler”. In fact, there were so many different solutions that a
comparative study had already been made in 1985 [4].

The designers of Ada 95 chose to solve this problem by adding distribution features
right in the language. This led to the “Distributed Systems Annex” of the Reference
Manual [1, Annex E]. This annex describes how an application can be split into different
partitions (as described in [5]). Partitions can be active, in which case they can contain
threads of control and packages with code, or passive, meaning that they only hold
passive packages, containing variables. The annex also defines how particular packages
belonging to the application can be categorized using categorization pragmas. Those
pragmas identify the packages playing a special role in a distributed application; they
come in addition to regular categorization pragmas such as Pure and Preelaborate. The
additional pragmas are:

Remote Call_Interface: subprograms declared in a Remote_Call_Interface package
will not be replicated on all the partitions where they are used. Each such package
is placed on only one active partition in the distributed application. When calling a
subprogram declared in a Remote_Call_Interface package, a remote call takes place
transparently if the package has been placed on a partition different from the one
of the caller.

Remote Types: types declared in a Remote_Types package are guaranteed to be trans-
ferable from one partition to another. Notably, those types have global semantics;
for example, pointers are good examples of type whose semantics are only local,

1 To be honest, this problem could have been solved in an elegant way if Ada 83 had a standard-
ized way of interfacing with other languages, which was not the case.



since it makes no sense to transport them on another machine. At the opposite,
integers have the same meaning on every partition.

Shared_Passive: variables declared in a Shared_Passive package can be accessed from
several partitions. Simple variable assignments and reads can be used to exchange
data between partitions. Shared_Passive packages can be placed on either active or
passive partitions.

As soon as a package holds the Remote_Call_Interface pragma, the subprograms
present in its declarative part can be called remotely. When necessary, the compiler will
generate stubs and skeletons to make a remote call; categorization dependency rules
guarantee that this will be doable.

This model allows to switch from the monolothic model to the distributed one (and
vice-versa) very easily, thus easing the debugging of distributed applications. However,
the Reference Manual does not say anything about the way a distributed application gets
built, just as it does not describe the compiler comand line options in the case of a regu-
lar program. In GLADE, we chose to create an external tool called GNATDIST, described
in [6] and [2]. This tool takes a configuration file written in an Ada-like language and
produces one executable per active partition; it shares code with GNATMAKE, GNAT’S
tool for building non-distributed programs.

GNATDIST allows the designer of a distributed application to apply pragmas and
attributes on partitions. Using them, it is possible to set properties on partitions, such
as their behaviour when a service becomes temporarily unavailable, as is described in
section 4.

2.2 Limitations

The Ada 95 model for distributing applications has been a big win over Ada 83, but is
still very limited with regards to today’s needs. We strongly feel that important features
and network protocols should also have been standardized, to increase Ada 95 inter-
operability. To take an example, a validated implementation does not have to support
heterogeneous systems, when Intel-based and SPARC-based machines are involved in
the same distributed program?. Also, an implementation made by a compiler vendor
will probably not be compatible with an implementation made by another vendor.

Also, the behaviour of a distributed application in case of a partition’s failure is
undefined. This is consistent with the non-distributed model conception, where the dis-
appearance of a part of the code from memory is not taken in account; it just cannot
happen on a working hardware with a working operating system.

More advanced concepts such as safety and integrity of the communication have
not been integrated in the annex either. It is generally assumed that the network and
the computers are under complete control, and that no attacker can snoop or alter data
packets (our solution for precisely this limitation can be found in section ??).

Former versions of GLADE also had limitations. For example, some versions had
a single point of failure, called the boot server; it was the main partition of a dis-
tributed application, and the only entry point for new partitions. Its disappearance made

2 Note that GLADE fully supports heterogeneous systems.



it impossible to add new partitions to the running distributed program. As explained in
sections 3 and 4, this limitation has been removed in the last version of GLADE. Also,
another limitation that has been recently reduced and will be detailed in section 6 was
that every partition contained the whole run time; this was a real problem in embedded
systems where memory and processing power are both expensive and constrained.

3 Removing the Single Point of Failure

As we have seen in section 2.2, the boot server is the weakest part of the distributed
application; if it dies, no more partition will be able to join the running distributed
system. For this reason, we have added to GLADE the capability of having more than
one boot server, using what we call boot mirrors.

A ring of boot mirrors connected together act as a replicated boot server. Tree-like
structures could have been used instead of a ring; we chose a ring because it was easier
to reconfigure in case of a partition failure.

A partition wishing to join a running distributed application needs to know the ad-
dress of one of the boot mirrors and connects to it. The boot mirror will then propagate
data about the new partition to the whole distributed program, and it will also provide
the new partition with all the needed information to become an integral part of the
distributed system.

Note that the presence of boot mirrors does not obsolete the boot server: one of the
boot mirrors is considered to be the boot server. Its role is to launch the global wave-
based termination detection algorithm similar to the one found in [7] and refined in
[2].

While a single boot server can take all the decisions such as assigning a Parti-
tion_ID3 for the new partition by itself, the various boot mirrors have to negotiate to
avoid possible race conditions. One potential problem is if two instances of the same
partition try to connect simultaneously to two different boot mirrors. Each of them will
check that the partition is not already present in the distributed system, which will be
the case. However, only one of the two partitions must be accepted, and the other one
must be disconnected soon enough not to have received any request from third-party
partitions. To solve this issue, different startup algorithms are used in this boot mirrors
ring. One of them handles Partition_ID allocation, and another one with the Remote -
Call_Interface package declaration and version check. The interested reader will find
descriptions of those algorithms using the high-level Petri nets formalism in [2].

The boot mirrors ring can reconfigure itself dynamically, and can be extended or
shrunken. When a new boot mirror wants to join the distributed application, it connects
as any other partition does by contacting an existing boot mirror. Once it has been fully
added to the running distributed application, it can insert itself in the ring and from there
act as a boot mirror. If a boot mirror disappears, its predecessor and successor connect
to each other and form a shrunken ring. All the partitions who previously chose the
now-dead boot mirror contact another one from the last list of boot mirrors they got.
Also, a new boot server is elected among the set of existing boot mirrors.

3 A Partition_ID is an integer used to identify a partition in a running distributed system [1,
E.1(8)].



To prevent early death of the only boot mirror, a new attribute Mirror _Expected has
been introduced in GNATDIST. Its presence prevents the distributed application from
starting remote procedure calls until at least two boot mirrors are present, so that one of
them can die without compromising the liveness of the whole distributed application.

However, when a partition offering an active service (such as through a Remote -
Call_Interface package) dies, it may make the whole distributed application useless. The
next section shows how a dead partition can be restarted or upgraded dynamically.

4 Fault Tolerance and Code Migration

There are several reasons why a partition must be restarted:

1. A failure occurred and the machine on which the partition was running is no longer
reachable.

2. The administrator of the distributed systems decided that the machine on which
the partition was running could not afford the load anymore; the partition is then
stopped and must be restarted on a new node (this is also called code migration).

3. Errors or inefficiencies have been detected in the implementation of the services
offered by the partition, or new services have been implemented. The old code will
be replaced by the new one (hot code swapping).

In any case, the distributed application as a whole must be notified that a service
has become unusable; decisions must be taken regarding the behaviour to adopt when
this situation arises, depending on whether the service is supposed to be restarted or
not, and whether the service is strictly necessary for the good health of the distributed
program.

In section 4.1, we show how a partition can be restarted. Section 4.2 describes the
various behaviours that can be adopted by the other partitions of the distributed appli-
cation.

4.1 Restarting aPartition

The Distributed Systems Annex does not say anything about the name of a partition. A
partition is known only through its Partition_ID, which must be unique in the distributed
application at any time. This Partition_ID is obtained through the attribute of the same
name applied to packages or subprograms, and it can only be used for comparaison
with other such attributes. However, nothing in the Reference Manual forces the value
of this attribute to stay the same during the whole life of the distributed program.

This facility has been used in GLADE to implement service restarting. When a par-
tition offering a service becomes unavailable, its Partition_ID will not be reused at any
later time. However, this service can be restarted on a new partition, which will get its
own new Partition_ID.

The only constraint put on a service being restarted is to keep the same Version, that
is to have the same declarative part as the one it replaces. It can be restarted on another
machine with another architecture, or have a totally different implementation. Two di-
rect consequences are that code migration and hot code swapping can be achieved very
easily by using the right reconnection policy, as described in the next section. State data
about the service can be kept using methods described in section 5.



4.2 FailureHandling Policy

A client using a service can adopt different behaviours when the service goes away.
We have implemented three different behaviours, chosen through the Reconnection at-
tribute of GNATDIST:

Reject_On_Restart : this policy is the strictest one. Once a service has been started,
there is no way it can be replaced if it dies. This ensures that no inconsistency can
be introduce by loss of data or incomplete transactions. Any call to such a service
after its death will raise Communication_Error, even if it tries to start again.

Wait_Until _Restart : this policy makes any attempt to call the remote service blocking
until the service has been revived. From the client point of view, no call to the
service will ever fail, except when a call is in progress while the service is being
disconnected. However, there is no guarantee that the client will not hang forever.

Fail_Until_Restart : this policy is a compromise between the two others. While the
service is absent, Communication_Error will be raised. When it comes back, clients
will be served again as if nothing happened. This allows a client to use a service
when possible, or to use a fallback one if the main service is unavailable without
blocking forever.

We have been recently proposed a fourth failure handling policy, whose descriptive
name could be Wait_Until_Restart_Or_Timeout. We prefer the use of the “select ... then
abort ... end select” construct in conjunction with the Wait_Until_Restart policy to get
the same result.

5 Preserving Partition State

It is useful to be able to revive a dead partition. It is even better if the partition can
restart with a meaningful consistent state. One of the ways to achieve this is to preserve
the state of the partition at some specific points on a persistent data store to be able to
restore it later.

Preserving the state of a partition can be performed at different programming levels.
For example, the user can manually save all the pertinent partition data on a persistent
storage object such as a file-system. This is error-prone as no automatic mechanism can
ensure that the whole state has been saved.

A more transparent solution consists in using Shared_Passive packages. These cate-
gorized packages contain the declaration of shared variables: global data can be shared
between active partitions, providing a repository similar to a shared memory, a shared
file-system or a database. Entry-less protected objects offer safe concurrent access and
update of shared objects. This feature is orthogonal to the notion of distributed objects,
which are only accessed through their exported methods. Shared_Passive packages can
be configured on both active and passive partitions. An active partition comprises one
or more threads of control, whereas a passive partition must be pre-elaborated and may
not perform any action that requires run time execution®. Typically, a passive partition
can be seen as a global address space shared by several active partitions.

4 In fact, those limitations only apply to user code and a compiler is free to add any code deemed
necessary to perform the expected operations. However, it is against the spirit of passive par-



5.1 Shared_Passive Packages Implementation

In the GLADE/GNAT model, each partition that includes a Shared Passive package has
its own local copy of the package data. This local copy can have an initial state if
the data storage used for this partition is persistent. In GNAT’s implementation, this
property is achieved by maintaining a set of files, in a dedicated directory. GLADE’S
implementation provides this particular storage along with additional ones.

Each variable v from a Shared_Passive package p gets its own file named after the
fully qualified name of the variable, here “p.v”. When a partition needs to read the
value of variable v, it checks for the existence of this file. If it does not exist, the in-
memory value of v is used, which corresponds to the initial value (if any) given at
variable declaration time. If the file exists, the value stored in the file is used. Assigning
a new value to v will create or update the content of the file. Therefore, this model
automatically provides persistence assuming the underlying storage support lifetime is
longer than the one of the program execution. It is up to the persistent storage interface
to choose when the data is really committed to the persistent store. An easy choice could
be at “Shared_Var_Close” time.

GNAT Implementation Issues For each shared variable v of type T, a read operation
“vR” is created whose body is given in figure 1. The function Shared_Var_ROpen in
package System.Shared_Storage either returns null if the storage does not exist, or re-
turns a Stream_Access value that references the corresponding shared storage in which
the current value will be read.

procedure VR is
S : Ada. Streans. Stream | O Stream Access;
begi n
S := Shared_Var_ROpen ("pVv");
if S/=null then
T Read (S, v);
Shared_Var_Cl ose (S);
end if;
end VR

Sample 1: Read expansion

Each read operation of v is preceeded by a call to the corresponding “vR” pro-
cedure, which either leaves the initial value unchanged if the storage does not exist,
or reads the current value from the shared storage if it does. In addition, for each
shared variable v, an assignment procedure is created whose body is given in fig-
ure 2. The function Shared_Var_WOpen in package System.Shared_Storage returns a
Stream_Access value that references the corresponding shared storage, ready to write
the new value.

titions to embed code in them, as they should be placeable on strictly passive nodes such as a
pure memory area.



procedure VA is

S : Ada. Streans. Stream | O Stream Access;
begi n

S : = Shared_Var_Wopen ("pv");

T Wite (S, v);

Shared_Var _Cl ose (S);
end VA;

Sample 2: Assignment expansion

Each assignment operation to v is followed by a call to the corresponding “vA”
procedure, which writes the new value to the shared storage.

The call to procedure Shared_Var_Close indicates the end of a read or assignment
operation. When a read operation and an assignment operation occur at the same time on
the same partition, as the same stream is used simultaneously, both operations can ter-
minate abruptly by raising an exception. Such a fatal error may occur when the stream
has been opened in read mode (call to “vR”) and then in write mode (call to “vA”)
and at least used by the read operation (call to 7"Read). To avoid this unfriendly be-
haviour, we introduced an additional mutual exclusion at the partition level. This GNAT
expansion always takes place, whether the user works in the distributed environment of
GLADE or in the non-distributed environment of GNAT.

GLADE Implementation | ssues GLADE provides a data representation based on XDR
[8]. As GNAT’s expansion is based on streams, heterogeneity is not a problem even for
Shared_Passive packages shared between partitions running on different architectures.

Like a Remote_Call_Interface package, a Shared_Passive package has to be unique
in the overall distributed system [1, E.2.1(10) and E.2.3(17)]. Moreover, a version check
has to be performed to ensure that the package specification used at execution time is
consistent with the one used at compilation time [1, E.3(6)]. Inthe GLADE environment,
a Shared_Passive package like a Remote_Call_Interface package has to register to the
boot server during its elaboration code in order to declare its partition location.

For these reasons, GLADE generates specific elaboration code for the client stubs
and the server skeleton. The server skeleton of a Shared_Passive package P registers
information about itself onto the boot server, and then checks that it has been correctly
registered by performing a request concerning itself. The client stubs retrieve infor-
mation about the package and check the result against the information concerning the
package specification as known at compile time.

5.2 Passive Partition Implementation

An interesting problem is raised by passive partitions, because they are not able to
perform any action at run time, as they have no thread of control of their own. Therefore,
active partitions that have visibility on Shared_Passive packages configured on passive
partitions have to act in place of those partitions. Multiple registrations problems are
solved by requiring that each passive partition in a distributed program has a unique
name. For the same reason, Shared_Passive packages configured on such a partition are



registered by the active partitions. The first registration of a Shared_Passive package
is assumed to be authoritative; any further registration will be checked for consistency
against this first registration.

5.3 Various Shared Storage Support

GLADE has a modular, layered and object-oriented architecture [9] which makes it easy
to add new communication protocols. The important modules in this context are the
core of GARLIC, called Heart, and the protocols. The protocol layers know nothing
concerning the format of the data they convey, and the high-level layers will work on any
protocol. All protocols inherit from a common abstract protocol class. To implement a
new protocol, the developer overrides abstract methods of the base protocol class.

GLADE uses the same architecture for storages; every storage inherits from a com-
mon abstract storage class, whose methods will be redefined. Existing storage supports
include GNAT’s file-systems support, but also two other ones that have been recently
added. One of them is based on a distributed shared memory algorithm, and the other
one uses a fault-tolerant distributed database manager.

The user can configure the Shared_Passive packages and passive partitions by using
GNATDIST. To support the configuration of passive partitions and storage supports,
GNATDIST introduces two new attributes Passive and Data L ocation.

The Passive attribute must be applied to a partition to indicate that this partition is
passive. GNATDIST checks that it only holds Shared_Passive packages. GNATDIST al-
lows to configure the network location of an active partition through the Self L ocation
attribute. This location contains the protocols with their internal data to use to com-
municate with this partition. It is also possible to configure the storage supports with
their internal data to use to get access to shared objects from Shared_Passive packages
configured on an active or passive partition through the Data L ocation attribute. For
instance, a developer using the GNATDIST configuration language could write the fol-
lowing representation clause.

for Partition’Data_Location use “dfs://dir”

This clause configures all the partitions storage supports to “dfs” which stands for
Distributed File System; the directory used by the underlying storage support (probably
NFS) is “dir”.

5.4 Disgributed File-System Storage

The basic storage support is based on a distributed file-system storage support. To safely
share files among several partitions, the user must ensure that the partitions that refer-
ence shared objects have access to an operating system service such as NFS [10]. Also,
some distributed file systems do not allow that two processes open the same file for
writing at the same time; this can cause priority inversion problems, as various tasks
with different priorities may be unblocked at the OS discretion.



5.5 Disgtributed Shared Memory Storage

This storage support provides an implementation of a distributed memory based on the
well-known algorithm of Li and Hudak [11] °.

Many algorithms have been proposed to maintain a strong memory coherence in a
distributed shared memory. In the most basic algorithm, an object server is present on
every partition of the distributed system and the servers are in charge of maintaining
the consistency of the distributed shared memory. When a partition wants to access an
object, it contacts its local server and two situations can occur: the object is available or
it is not. If the object is unavailable, the server makes a read/write object fault in order
to get the object from the others.

In a first approach, a server devoted to an object centralizes write and read opera-
tions. It receives these requests, executes them and sends acknowledgements or object
copies. Naturally, the object server (or the object owner) may be overloaded by too
many write requests especially when the object locality is not adequate. Thus, another
strategy allows the object to migrate to the last client which becomes the new object
owner. Read request bottleneck has a more flexible answer since the uniqueness of the
object in read-mode is not required. Therefore, object replicas may be delivered by the
object owner to several clients as long as the object is not modified. An invalidation
protocol ensures that any write operation invalidates all object replicas.

GLADE’s distributed shared memory is based on this algorithm with object migra-
tion and read-only replicas. This algorithm is very efficient in terms of network activity
but does not provide fault-tolerance properties. Therefore, we plan to implement an-
other algorithm for distributed memory which provides full object replicas [13].

5.6 Fault-Tolerant Database Storage

We have implemented one more back-end for Shared_Passive package, based on an
existing soft real-time fault-tolerant distributed database manager, called Mnesia. Mne-
sia is written in Erlang®, a language used primarily for building telecommunication
switches [14].

Just as Ada, Erlang integrates distribution features right in the language. More ex-
actly, the Erlang model is based on inter-process communication, but without any con-
sideration about the physical location of the target process, which can be located on
another Erlang node. The Mnesia database system allows an Erlang application to store
any term and retrieve it with a O(1) complexity in a read-only table’. Data can be ac-
cessed transparently from any Erlang node, and can be replicated on one or more nodes
and with a reasonable complexity in more complicated cases.

We wrote this back-end with the assumption that a crash in an Ada distributed appli-
cation was due to a network or a hardware failure, not to a fault in the application. Also,
Erlang nodes are robust and not likely to crash, as the Erlang virtual machine takes care
of all memory allocations and deallocations without letting the user manipulate pointers

5 The study of an Ada implementation of this algorithm can be found in [12].
6Seehttp:// ww. erl ang. or g/ for more information on Erlang.
" A read-only table does not need exclusive access, as opposed to a read-write one.



at all. Erlang even offers the programmer with automatic supervision, and can restart
important threads if they die unexpectedly. Of course, an hardware failure will also af-
fect an Erlang node, which is why Erlang keeps its databases replicated. We have then
chosen to associate one local Erlang node to each Ada partition: an Ada partition P;
and its associatiated Erlang node E; are located on the same machine.

Note that not all the Erlang nodes need to have a copy of the database holding the
Shared_Passive state. However, to survive k simultaneous failures, at least £+ 1 replicas
of the database must exist.

6 Other Useful Features

The loose requirements of the Distributed Systems Annex over the internal behaviour
of the distribution run time allowed us to implement additional features while staying
fully compatible with the Reference Manual. Some of those features have already been
described in details in other articles; they will only be briefly summarized here for
completeness.

Data Filtering: Incoming and outgoing data can go through a user-defined filter in
order to provide services such as encryption or authentication [15];

Termination Policies: GLADE extends the classical termination model and allows for
example clients to terminate while servers keep running [2];

Light Run-Time: in some particular configurations, GLADE can detect that a partition
does not need to embed the whole distribution run-time. For example, if it can de-
cide that a partition has a single-threaded client-only behaviour, then it can choose
to include a light run-time that will not use any tasking.

7 Conclusion and Future Work

In this paper, we have shown how fault tolerance, code migration and data persistence
have been added without giving up the compatibility with the language concepts de-
scribed in the Reference Manual.

We are currently pursuing our research work in two directions:

1. We are extending the list of platforms that GLADE supports; support for JGNAT
[16] is on its way, and will support distributed applications made of native and
bytecode partitions.

2. We are working on bridges between the Distributed Systems Annex and other mid-
dleware, such as CORBA. We have already released ADABROKER?, a free software
CORBA implementation written in Ada. Our goal is to eventually use a common
network layer and communication stack in both ADABROKER and GLADE. This
could lead to the choice of 110P, CORBA’s standardized communication protocol
for the Internet, as the underlying GLADE protocol.

Our goal is to continue to extend the range of domains that can be reached by Ada 95
distributed systems as much as possible.

8 ADABROKER is available at ht t p: / / adabr oker . eu. org/ .



References

10.

11.

12.

13.

14.

15.

16.

ISO, Information Technology — Programming Languages — Ada. ISO, Feb. 1995.
ISO/IEC/ANSI 8652:1995.

S. Tardieu, GLADE — Une implémentation de I’annexe des systémes répartis d’Ada 95. PhD
thesis, Ecole Nationale Supérieure des Télécommunications, Oct. 1999. PhD advisor was L.
Pautet.

L. Pautet, T. Quinot, and S. Tardieu, “CORBA & DSA: Divorce or Marriage?,” in Proceed-
ings of AdaEurope’99, (Santander, Spain), June 1999.

J. W. Armitage and J. V. Chelini, “Ada software on distributed targets: a survey of ap-
proaches,” ACM SIGADA Ada Letters, vol. 4, pp. 32-37, Jan./Feb. 1985.

A. Gargaro, S. J. Goldsack, C. Goldthorpe, D. Ostermiller, P. Rogers, and R. A. \olz,
“Towards distributed systems in Ada 9X,” in Proceedings of the Conference for Industry,
Academia and Government, (New York, N, USA), pp. 49-54, ACM Press, Nov. 1992.

Y. Kermarrec, L. Nana, and L. Pautet, “GNATDIST: a configuration language for distributed
Ada 95 applications,” in Proceedings of Tri-Ada’96, (Philadelphia, Pennsylvania, USA),
1996.

F. Mattern, “Algorithms for distributed termination detection,” Distributed Computing,
vol. 2, no. 3, pp. 161-175, 1987.

Sun Microsystems, xdr — library routines for external data representation. Unix systems
manual page.

Y. Kermarrec, L. Pautet, and S. Tardieu, “GARLIC: Generic Ada Reusable Library for Inter-
partition Communication,” in Proceedings Tri-Ada’95, (Anaheim, California, USA), ACM,
1995.

J. Corbin, The Network File System For System Administrators. Mountain View, Californie,
USA: Sun Microsystems, Inc., 1993.

K. Li and P. Hudak, “Memory coherence in shared virtual memory systems,” ACM Transac-
tions on Computer Systems, vol. 7, pp. 321-359, November 1989.

Y. Kermarrec and L. Pautet, “A Distributed Shared Virtual Memory for Ada83 and Ada9Xx
Applications,” in Proceedings of TriAda’93, (Seattle, Washington, USA), Sept. 1993.

K.-L. Wu, K. Fuchs, and J. Patel, “Error recovery in shared memory multiprocessors using
private caches,” IEEE Transactions on Parallel and Distributed Systems, vol. 1, pp. 231-239,
April 1990.

J. Armstrong, M. Williams, and R. Virding, Concurrent Programming in Erlang. Englewood
Cliffs, NJ: Prentice-Hall, 1993.

L. Pautet and T. Wolf, “Transparent filtering of streams in GLADE,” in Proceedings of Tri-
Ada’97, (Saint-Louis, Missouri, USA), 1997.

C. Comar, G. Dismukes, and F. Gasperoni, “Targeting GNAT to the Java Virtual Machine,”
in Proceedings of the TRI-Ada’97 Conference, November 9-13, 1997, St. Louis, MO (ACM,
ed.), (New York, NY 10036, USA), pp. 149-164, ACM Press, 1997.



